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Abstract—The Belgian Institute of Space Aeronomy (BIRA-
IASB), “Centre Spatial de Liège” (CSL), “Laboratoire de Tech-
niques Aéronautiques et Spatiales” (LTAS) of University of Liège,
and the Microwave Laboratory of University of Louvain-La-
Neuve (UCL) are collaborating in order to develop a miniature
version of a xylophone bar magnetometer (XBM) using Mi-
croelectromechanical Systems (MEMS) technology. The device
is based on a classical resonating xylophone bar. A sinusoidal
current is supplied to the bar oscillating at the fundamental
transverse resonant mode of the bar. When an external magnetic
field is present, the resulting Lorentz force causes the bar to
vibrate at its fundamental frequency with an amplitude directly
proportional to the vertical component of the ambient magnetic
field. In this paper we illustrate the working principles of the
XBM and the challenges to reach the required sensitivity in
space applications (measuring magnetic fields with an accuracy
of approximately of 0.1 nT). The optimal dimensions of the
MEMS XBM are discussed as well as the constraints on the
current flowing through the bar. Analytical calculations as well
as simulations with finite element methods have been used.
Prototypes have been built in the Microwave Laboratory using
Silicon on Insulator (SOI) and bulk micromachining processes.
Several methods to accurately measure the displacement of the
bar are proposed.

I. INTRODUCTION

Magnetic fields play a key role in many aspects of the
solar-terrestrial interactions. For example, during geomagnetic
activity, charged particles precipitate along geomagnetic field
lines and produce spectacular aurora. Strong sheets of field-
aligned currents (FACs) associated with these precipitations
produce local perturbations of the geomagnetic field. A mag-
netometer onboard a spacecraft crossed by these current sheets
will record the magnetic field perturbations and will provide
a measure of the field aligned current using the Maxwell’s
equation −→∇ ∧ −→B = −→J . With a single spacecraft stationary
current sheet may be obtained. However this situation is not
always observed. In some cases, spatial and temporal varia-
tions of the magnetic field cannot be discriminated. Currently
the separation of satellites in multi-spacecraft missions like
Cluster or Themis is usually larger than the width of the
current sheet. This example illustrates the importance of multi-
point measurements with a fleet of micro- or pico-spacecraft
with small separations.

Since launch costs represent a significant fraction of the
total mission expenditures, reducing such costs necessitates
careful consideration of instrument and spacecraft component
miniaturization. The goal of this research is to build a sensitive,
low mass, low size and low consumption magnetometer to
embark onboard a fleet of micro-, nano- or pico-satellites in
order to carry out these multi-point measurements.

Three main types of magnetometers have been traditionally
used in space missions: the fluxgate magnetometer (FGM),
the search-coil magnetometer (SCM) and the vector helium
magnetometer (VHM). Efforts to miniaturize size and mass
of these magnetic sensors have been limited by fabrication
difficulties and loss of sensitivity. Moreover, they are always
located at the end of long booms to avoid magnetic perturba-
tions from the spacecraft itself, a configuration that is hardly
compatible with nano- or pico-satellites.

In the framework of the Solar Terrestrial Center of Ex-
cellence (STCE), the Belgian Institute for Space Aeronomy
(BISA) is studying the feasibility of developing and construct-
ing a magnetometer for space applications suited to miniatur-
ization. With “Centre Spatial de Liège (CSL)”, “Laboratoire de
Techniques Aéronautiques et Spatiales” (LTAS) of University
of Liège, and Microwave Laboratory of University of Louvain-
La-Neuve (UCL), the objective is to develop a Xylophone Bar
Magnetometer (XBM) in which the displacement of a beam
is directly proportional to the magnitude of one component
of the ambient magnetic field. The specific design of this
magnetometer makes it particularly suitable to be fabricated
at the size of Microelectromechanical Systems (MEMS). This
study benefits from previous works initiated at the Applied
Physics Laboratory of the John Hopkins University (Givens et
al 1996, Wickenden et al 1997, Zanetti et al 1998, Oursler et
al 1999, Wickenden et al 2003).

The challenging task with this XBM is to reach the
subnanotesla accuracy and qualify it for space applications.
Another goal we would like to achieve is to use a set of
such miniature magnetometers in a clever way to accurately
determine the electromagnetic contribution of the electronics
onboard a spacecraft. On one hand, this would reduce the mag-
netic cleanliness requirements currently imposed on spacecraft
instruments and on the other hand, this would prevent the use



Fig. 1. Operating principle of a Xylophone Bar Magnetometer

of large booms for magnetometers.
In section II, the working principles of the XBM are

described. An analytic study of the parameters influencing
the deflection of the bar is discussed in section III whilst
section IV is devoted to simulations with finite element
methods (FEM). In section V, we describe a first XBM MEMS
prototype manufactured at the Microwave Laboratory as well
as preliminary measurements of the curvature of the structure.
Several methods to accurately measure the displacement of
the bar are considered in section VI. We conclude with some
perspectives about additional modeling with simulations.

II. WORKING PRINCIPLES OF THE XBM

The XBM magnetometer is based on a classical resonating
xylophone bar. This relatively simple device uses the Lorentz
force to measure one component of the ambient magnetic field.
It consists of a thin conductive xylophone bar supported at
the nodes of its fundamental mode of mechanical vibration by
two arms bonded to the bar to provide low-resistance electrical
contacts (see Figure 1). The nodes are located at 22.4% of the
bar’s length from each unclamped end.

A sinusoidal current is supplied to the bar through these
arms, oscillating at the fundamental transverse resonant mode
of the bar f0:
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where E is the Young’s modulus (N/m2), L the bar length,
Ia the area moment of inertia (= ab3/12 for a rectangular
beam), ω the mass per unit length (ρ = ω a b), and ρ, a, b are
the mass density, width and thickness of the bar, respectively.
When a current I is driven through the xylophone bar in the
presence of an external magnetic field Bext, a resulting Lorentz
force applied to the bar makes it vibrate vertically.

~F = I ~Ls ∧ ~Bext (2)

where ~Ls is a vector whose magnitude Ls is the length
of the xylophone bar between the supports (Ls ∼ 0.552L).
When the frequency of the current is set at the fundamental
transverse resonant frequency of the bar, the deflection of the

bar is strongly enhanced and its amplitude in the middle of
the bar is given by

d(f0) =
5F L4

s
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where Q is the mechanical quality factor which is deter-
mined by different parameters depending on bar material,
manufacturing process, but also includes various types of
dampings such as air damping, support damping, thermoelastic
damping and surface damping. Equation (3) is obtained by
modeling the bar as a mass-spring-dashpot system submitted
to a static deformation. Another approach to obtain the theo-
retical displacement of the bar is to solve the Euler-Bernouilli
equation of a free-free bar submitted to a dynamic deformation
(Niyonzima 2009). In this case, the displacement of the bar is
given by

d(f0) = 1.747× 10−3 × FL4

E Ia
Q (4)

The ratio between equations (4) and (3) is equal to 1.446.
Both theoretical values will be compared to values obtained
with simulations in section IV.

From equations (2), (3) and (4), it can be seen that the
amplitude of the deflection of the bar is linearly proportional
to the magnetic field component B parallel to the surface of the
xylophone bar and normal to the direction of the drive current.
This device is therefore intrinsically linear unlike many other
magnetometers. In principle, it also has a very wide dynamical
range: magnetic field intensities from nanoteslas to teslas
could be measured by simply adjusting the current amplitude.
However, the maximum intensity of the current that can flow
through the bar depends on the importance of the Joule
effect and of the thermomechanical coupling. Indeed, a too
large elevation of temperature inside the bar could result in
significant modifications of its mechanical properties. This
thermomechanical coupling is briefly discussed in section IV
devoted to simulations. The influence of the other parameters
of the bar (dimensions, Young modulus, quality factor) on its
deflection are discussed in section III.

Because the other vibration modes of the bar have a very
different frequency and are not excited at this frequency
f0, this technique discriminates against these components of
the magnetic field extremely well so that any second-order
cross coupling between different field components is extremely
small. A three-axis sensor can be constructed with three
xylophone bars operating at different frequencies.

The variation of the amplitude of the bar deflection as a
function of the frequency of the driving current in a constant
external magnetic field B is given by

d = d(f0) × 1√
[1− ( ff0 )2]2 + ( f

Qf0
)2

(5)

As the frequency is chosen as the fundamental mechanical
resonance frequency, the displacement amplitude is enhanced,



reaching a maximum value given by d(f0), while the phase
angle displays a 180◦ shift.

The amplitude of the deflection of the xylophone bar can be
measured by established detection techniques such as optical
and capacitive methods or by new techniques using plasmons
or magnetostrictive material. They will be shortly discussed in
section VI.

III. PARAMETRIC STUDY OF THE DEFLECTION

In this section we discuss different parameters influencing
the deflection d, namely, the electric current I , the Young
modulus E, the quality factor Q and the dimensions L, a
and b of the bar.

A. Influence of the current: Joule effect and thermoelectric
coupling

According to equation (3) or (4), the larger the current
flowing through the bar, the larger its deflection. However, the
maximum value of the electrical current flowing into the bar is
in practice limited by the Joule effect and the thermomecanical
coupling. The increase of temperature resulting from the Joule
effect can on one hand modify the thermal and electrical
conductivites of the material (respectively κ and σ), and on
another hand the mechanical properties of the bar via the
thermal coefficient of expansion α (which can modify the
dimensions of the structure, therefore its eigenfrequencies)
or via the Young’s modulus. These couplings can better be
accounted for with FEM simulations. In section IV, a simpler
method will be used with a mechanical calculation carried out
after a thermo-electromagnetic study.

However, as a first step, we make a simple estimation of the
maximal value of the current Imax by using an electric circuit
analogy of the system insulator+bar+arms. In this analogy,
conduction heat transfer is modeled with thermal resistances
Rx = wx

κx Sx
where x stands either for the insulator, the arm or

the bar. w is the width, κ the thermal conductivity and S the
cross section. A discrete distribution of temperature is assumed
in several nodes (see Fig 2). The temperature profile is
determined by solving a set of Kirchoff laws at the nodes when
a voltage is applied through the arms. This temperature profile
is then used to update the values of electric and thermal con-
ductivitites. Electric resistivity was represented by an empirical
linear relationship ρ = ρ0× (1 + α (T − T0)) where ρ0 is the
resistivity at the room temperature T0 (ρ0 ∼ 2, 28×10−8 Ω m
and α ∼ 0.004 K−1 in the case of Aluminium). The thermal
conductivity κ was then calculated with the Wiedemann-Franz
law

κ

σ T
=
π2 k2

b

3 e2
(6)

where kb and e are respectively the Boltzmann constant
and the charge of the electron. This empirical law is valid
in metals where the heat conduction is mainly ensured by
free electrons. It would not be valid in semi-conductors like
silicon where heat conduction is also due to phonons. Also,
experiments have shown that it is valid at high and low

Fig. 2. Sketch of the electric circuit analogy used to estimate the maximal
value of the current that can flow into the bar. The actual bar is filled with
holes to facilitate the etching of the insulator but these holes have not been
modeled in the electric circuit.

temperatures but that there are slight deviations from this law
at intermediate temperatures. Despite these limitations, this
approach is good enough for a first-order estimation. Once we
have the discrete temperature distribution in our full system,
we modify the electrical and thermal conductivities and solve
the Kirchoff laws again until we reach a steady-state. In this
simple approach, the resolution of the temperature distribution
is too crude but we take into account in a rather simple way
the coupling between thermal and electrical fields. Finally we
assume that heat transport is mainly due to conduction and
that heat losses by convection and radiation are negligible.
This assumption is correct because of the very small size of
the emitting surface and if we work in a rarefied medium.

These calculations with the electric circuit analogy were
carried out on the system sketched in Figure 2. Dimensions
of the bar are 502µm × 54µm × 2.5µm and those of the
arms are 15µm × 4µm × 2.5µm. Thermal and electrical
conductivities for the Aluminium at room temperature are
237 Wm−1K−1 and 37.7 × 106 S m−1. Thermal conductivity
for the insulator SiO2 is 1.38 W K−1. Figure 3 shows the
maximum temperature in the bar (T3 in Figure 2 located at
half the distance between the nodes) as a function of the
voltage applied between the nodes. Two curves are shown
according to whether some thermo-electrical coupling is taken
into account or not. From these curves we see that an increase
of temperature of 10K is obtained for an applied voltage
of approximately 0.015V which corresponds to a current of
∼ 0.15A for an aluminium bar with the aforementionned
dimensions.



Fig. 3. Maximum temperature in the middle of the bar as a function of
the RMS voltage applied between the nodes. We consider an aluminium bar
of dimensions 502µm × 54µm × 2.5µm with 15µm × 4µm × 2.5µm
supporting arms. The red curve is obtained when the Wiedemann-Franz law
is not taken into account (no thermo-electrical coupling) while the blue curve
is obtained when this law is used.

B. Influence of the Young Modulus

The lower the Young’s modulus E, the lower the first
mechanical resonance frequency of the bar and the larger
its deflection. At first sight, we should therefore choose a
material with a small value of E. However, in addition, we
must also select a material with large thermal and electrical
conductivities and which can actually be used in MEMS
micromachining.

Our choice to realize the first prototype in the Microwave
Laboratory was to use Aluminium which has a relatively small
Young’s modulus (E = 70GPa) and is a very good heat and
electrical conductor. However, as we will see below, the bulk
micromachining used at the Microwave Laboratory introduced
a lot of residual stresses in the bar due to the large difference of
the thermal expansion coefficient of the materials used for the
bar and for the substrate (α = 23× 10−6K−1 for aluminium
and α = 3× 10−6K−1 for silicon).

C. Influence of the quality factor Q

In this section, we follow an approach similar to the work
of Naeli & Brand (2009). Four sources of dampings are
considered : air damping, support damping, thermoelastic
damping and surface damping.

Air damping is due to the loss of energy resulting from
the interaction of the bar with the surrounding air. At low
air pressure, in the molecular regime, the damping is due to
collisions with individual air molecules. The quality factor

Qair =
µ2
n

km P
(
b

L
)2
√
E ρ

12
(7)

varies with the air pressure P (Blom et al, 1992). µn is a
constant equal to 4.73 for the first bending mode of a free-free
bar and kn =

√
32M
9πRT where R is the gas constant, M the

molecular mass of the air and T the temperature (in K). At
higher pressure, in the viscous regime, the air acts as a viscous
fluid that brakes the displacement of the bar. The bar is then
modeled as a string of resonant spheres for which the quality
factor does not depend anymore on P (Hosaka et al 1995,
Naeli & Brand 2009). Of course, in space, the contribution of

air damping will be negligible but for other potential ground-
based applications, we keep it as a possible loss source.

Support damping is usually one of the most important
dissipation mechanism in MEMS. It represents the mechanical
energy dissipated via the coupling to the support structure. In
the case of our XBM, the supporting arms are connected at
the nodes of the first mode shape of the bar and in theory
the damping is equal to zero. Due to the finite width of the
supporting arms, this assumption is not completely correct.
However, due to the very small width of the supporting arms
(∼ 4µm in our prototype) compared to the length of the bar
(∼ 500µm), we can safely neglect the contribution of support
damping.

Thermoelastic damping (TDE) is the loss of energy caused
by the coupling between the thermal and the strain fields.
When the bar is submitted to bending, the two opposite sides
undergo opposite deformations, the upper and lower sides
being alternatively compressed or stretched. A gradient of
temperature is generated accross the thickness of the bar and
a relaxation mechanism can occur. TDE is important when
the vibration frequency is of the same order as the thermal
relaxation rate, otherwise the vibrations can be considered
either as isothermal or adiabatic. For the modelisation of TDE,
the model of Lifshitz & Roukes (2000) is used such that the
quality factor is predicted by

Q−1
TED =

Eα2T0

cv

[
6
ζ2
− 6
ζ3

sinh(ζ) + sin(ζ)
cosh(ζ) + cos(ζ)

]
(8)

where ζ = b
√

ω0,n

2χ , T0 the equilibrium temperature and cv

the heat capacity at constant volume. ω0,n = µ2
n

√
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mL4 are the
isothermal eigenfrequencies of the bar and χ = κ

cv
. An order

of magnitude of the thermal relaxation time τ can be obtained
by assuming that the variation of temperature is mainly due
to conduction. In this case, we have :

τ ∼ ρcvb
2

κ
(9)

For the case of aluminium (ρ = 2.71 × 103 Kg m−3, cv =
900 J Kg−1 K−1 and κ = 237 W m−1 K−1), the inverse of the
thermal relaxation time 1/τ varies between 50 MHz and 120
KHz for bar with thicknesses between 1 and 20µm. According
to this model, we conclude that the thermoelastic damping is
negligible for a bar with dimensions of 502µm × 54µm ×
2.5µm because the first eigenfrequency of such a bar is on
the order of 100 KHz. In this case, heat is transferred between
the sides of the bar much quicker than the time needed for an
oscillation. The bar is isothermal.

Surface damping might become the predominant type of
damping when the thickness of the structure becomes very
small, resulting in a large surface to volume ratio. In this case,
energy losses are due to surface effects such as adsorption.
Yang et al (2002) model the inverse of the quality factor by

Q−1
surf = 2δ

Es2
E

3a+ b

ab
(10)



Fig. 4. Inverse quality factors as a function of pressure for air damping,
thermoelastic damping and surface damping. Calculations have been carried
out for a 502µm × 54µm × 2.5µm bar with 15µm × 4µm × 2.5µm
supporting arms. Temperature is 293K.

Fig. 5. Quality factor of an aluminium bar as a function of the length. Width
a = 54µm and thickness b = 2.5µm. Dimensions of supporting arms are
15µm× 4µm× 2.5µm. Temperature is 293K.

where Es2 is a property of the adsorbate layer. Some
experiments on 20µm thick beams have shown that the
product δ Es2 is close to 1, a value that we will assume in
the following. The exact value of this parameter has to be
determined experimentally.

Taking into account the various dampings, the total quality
factor is calculated as

Q−1
tot = Q−1

air +Q−1
TED +Q−1

surf (11)

where we have already neglected the support damping.
Figure 4 illustrates the inverse of the quality factor as a
function of the pressure for the three damping mechanisms.
At low pressure, air damping becomes negligible. The major
parameter that will then determine whether TED or surface
damping dominates is the thickness of the bar. For our
XBM, the thickness is small and so the surface damping will
be predominant. Since this mechanism is poorly described
analytically, the actual quality factor will have to be carefully
measured experimentally.

D. Influence of the dimensions of the bar

In equation (3), the deflection of the bar is a function of its
dimensions via L (or Ls), the area moment of inertia Ia and
the quality factor Q. Figures 5, 6 and 7 respectively illustrate
the variation of the quality factor with the length L, the width
a and the thickness b of the bar. Two cases are shown : no air
pressure and air pressure of 10−3 bar (=103 Pa).

The displacement of the bar increases strongly when the
length of the bar increases due to the L4 dependance. For

Fig. 6. Quality factor of an aluminium bar as a function of the width. Length
L = 502µm and thickness b = 2.5µm. Dimensions of supporting arms are
15µm× 4µm× 2.5µm. Temperature is 293K.

Fig. 7. Quality factor of an aluminium bar as a function of the thickness.
Length L = 502µm and width a = 54µm. Dimensions of supporting arms
are 15µm× 4µm× 2.5µm. Temperature is 293K.

non-zero pressure, there is an optimal value of the length
(L ∼ 500µm giving the highest possible quality factor
(see Figure 5). Of course the length of the bar cannot be
larger than a maximum value above which the bar will stick
to the substrate. The width of the bar has relatively few
importance both on the quality factor (see Figure 6) and on the
displacement of the bar (because the dependance of Ia with a
is only linear) but it must be at least of the order of 50µm to
have the largest Q value. The simulations presented in section
IV will also indicate that the width is important for the correct
calculation of the bar eigenfrequencies. Finally, there is also an
optimal value of the thickness (b ∼ 2.5µm) which maximizes
the quality factor (see Figure 7). The thickness also has a
strong impact on the displacement of the bar because of the
b3 dependance of the Ia factor. Thinner bars produce larger
values of the bar displacement.

Therefore, in the simulations presented below, the length of
the bar L will always be of the order of 500µm, the width of
the bar a of the order of 50µm and the thickness of the bar
b lower or equal to 2.5µm.

IV. SIMULATIONS WITH FINITE ELEMENT METHODS

These FEM simulations have been carried out with Oofelie
driven by Samcef. Oofelie is a finite element multi-physics
software which allows to model the couplings between various
fields. In the XBM, the sinusoidal electric current flowing
through the bar induces a temperature increase via a Joule
effect, which also modifies the thermal and electrical conduc-
tivities of the bar and therefore changes the current distribution
inside the bar. There is a thermo-electromagnetic coupling.



The temperature increase inside the bar can also modify its
mechanical properties such as its dimensions and its Young
modulus, and therefore its eigenfrequencies. We adopted the
following procedure: first, a thermo-electromagnetic steady-
state equilibrium is computed. Then, the eigenfrequencies of
the bar are calculated by assuming small perturbations of this
steady state and carrying out a linear analysis around the
equilibrium solution.

Due to the symmetry of the XBM, all these simulations
were done only on a quarter of the whole structure (one half
in length and one half in width) to save computational time.

A. Influence of the holes in the bar

As will be described in section V, the bar in our MEMS
XBM prototype is designed with many holes (see also Figure
2 for a sketch) in order for the etchant to easily access the
sacrificial SiO2 layer and release the structure during the
micromachining process. The dimensions of these holes are
2µm× 2µm and their separation is 5µm. So, before running
the simulations described above, a mechanical simulation is
carried out to check their influence on the calculations of
the eigenfrequencies. Furthermore, since the presence of these
holes strongly increase the computational time (because the
size of the mesh must be smaller than the size of a hole), it is
highly desirable to make simulations with a full structure (with
no holes) instead of the more complicated structure with holes.
For that purpose a comparison is made between the values
of the first eigenfrequency obtained with two mechanical
simulations : the first one is obtained for the structure with
holes using a finer mesh size while the second is obtained for
the full structure with no holes but with electrical, mechanical
and thermal properties modified as follows :

x = x0 ×
Vh
V0

(12)

where Vh is the volume of the bar with holes and V0 is the
volume of the bar without holes. x stands for the electrical
conductivity σ, the thermal conductivity κ, the Young modulus
E or the density of the bar ρ. The two simulations are
illustrated in Figures 8 and 9 obtained for a bar with the
same dimensions. The difference between the values of the
first eigenfrequencies obtained with the two simulations is only
of 45 Hz. We can then safely use a full structure with adapted
material parameters for the following simulations.

B. Electromagnetic calculations

A general electromagnetic calculation implies to solve the
Maxwell equations

~∇∧ ~H = ~j +
∂ ~D

∂t
(13)

~∇∧ ~E = −∂B
∂t

(14)

for the geometry given by one quarter of the bar + support-
ing arms. However, for our problem, additional assumptions

Fig. 8. Calculation of the first eigenfrequency of a structure with
2µm × 2µm holes separated by a distance of 5µm. Dimensions of the
bar are 427µm × 54µm × 2.5µm and those of the supporting arms are
5µm× 4µm× 2.5µm. The first eigenfrequency is f = 99.122 MHz.

Fig. 9. Calculation of the first eigenfrequency of a structure with no holes
and the same dimensions as in Figure 8. The properties of the material have
been modified according to (12). The first eigenfrequency is f = 99.077
MHz.

apply which simplify the Maxwell’s equations. First, capaci-
tive effects can be neglected, i.e. the displacement current ∂ ~D∂t
is negligible. This assumption holds because the size of the
bar L � λ, the wavelength which is of the order of 3000 m
for a vibration frequency of ∼ 100 KHz. Second, skin effects
are negligible. Indeed the skin depth of the aluminium bar
with the above dimensions is of the order of 300µm, much
larger than the thickness of the bar. In this case, the general
electromagnetic problem reduces to an electrokinetic one and
the Maxwell’s equations become

~∇.~j = 0 (15)

~∇∧ ~E = 0 (16)

From (15), the distribution of the current density throughout
the bar can be calculated with adequate boundary conditions.
Parallel electromagnetic boundary counditions were applied on
external faces of the structure to simulate a null electromag-
netic field at infinity. An example is shown in Figure 10. The
distribution of the voltage along the structure can be obtained
from (16). Finally the distribution of the magnetic field around
the structure induced by the current flowing in the bar can also
be calculated.

C. Thermal calculations

From the distribution of the current density ~j, a thermal
calculation can be performed assuming that heat is transmitted
only by conduction. Neglecting thermal radiation is a valid



Fig. 10. Distribution of the current density in the bar obtained with Oofelie
by solving an electrokinetic problem. Only one quarter of the bar is shown.

Fig. 11. Distribution of the temperature in a bar with dimensions 427µm×
49µm×2.5µm and supporting arms of dimensions 15µm×4µm×2.5µm.
Applied voltage between the nodes is ∆V = 0.0181 V.

assumption given the size of the bar. Since we are not
interested in the complete dynamical process but instead in the
final thermo-electric steady-state equilibrium, only the steady-
state equation of heat conduction is solved :

~∇.(κ ~∇T ) = −Qv (17)

Qv is the power per unit volume generated as heat by
the Joule effect. As mentionned above, in those simulations,
the coupling between electric and thermal fields is neglected.
An example of result is shown in Figure 11 for a bar with
dimensions 427µm × 49µm × 2.5µm and supporting arms
of dimensions 15µm × 4µm × 2.5µm. The applied voltage
between the nodes was ∆V = 0.0181 V, corresponding to a
current of ∼ 0.15 A. The maximum value of the temperature
in the structure obtained with simulations is 296K, which is
smaller than the value (301.5K) obtained with the equivalent
electric circuit method described in section II. The difference
might be due to the lack of thermo-electrical coupling in our
simulations but also to the too crude discretisation of the bar in
the equivalent electric circuit. The discrepancy between results
from the two methods increases when the applied voltage
becomes larger. Figure 12 shows a profile in the temperature
distribution in the bar taken at half the width of the bar.

D. Mechanical calculations

Firstly, the first eigenfrequency and the related mode shape
are evaluated using the piezoelectric module of Oofelie. The
external load applied to the bar is the Lorentz force, ~F =
~j∧ ~Bext, whose distribution along the bar is calculated from the

Fig. 12. Temperature profile along the bar corresponding to results shown
in Figure 11. The cross section is located at half the width of the bar.

distribution of the current density ~j and from a given value of
the external magnetic field ~Bext. The following finite elements
equation is solved :

M ~̈q + C ~̇q +K ~q = ~F (18)

M , C, and K respectively represent the mass matrix, the
damping matrix and the spring matrix. ~F and ~q are respectively
the vectors of applied forces and of the displacements of
nodes/elements. For the damping matrix C, a proportional
damping was assumed, i.e. C = a1M + a2K, from which
we obtain 1

2Q ' ε = 1
2ω a1 + 1

2a2 ω, where ε is the damping
ratio. Q can be found either with analytical calculations (as
has been done in section III) or by evaluating it with dynamic
simulations (see determination of the thermoeleastic damping
below). From Q, the values of a1 and a2 to use in the
simulations can be determined.

The size of the mesh must be checked in order to see if
the discretisation of the system is good enough. For that pur-
pose, the first eigenfrequency is calculated with an increasing
number of elements until it converges. The discretisation is
sufficient when convergence is reached. Tetrahedral elements
are used. Equation (18) is solved with a Cholesky LU factor-
ization solver. Convergence was better achieved with second
order elements. Typical number of elements needed to reach
convergence is of the order of 105.

Then, a frequency sweep around the first eigenfrequency
is carried out to study the dynamic behavior of the bar. An
example is shown in Figure 13 where the deflection of the bar
is shown as a function of the frequency for a given value of
Q = 10000. The simulations results are in better agreement
with the theoretical curve given by equation (3).

On the other hand, the theoretical value of the first eigen-
frequency, given by equation (1), is very different from the
value obtained with Oofelie simulations. This is highlighted
in table I where theoretical and simulated values of the first
eigenfrequency have been calculated for various lengths of the
bar. The discrepancy between the theoretical and simulated
values are probably due to the fact that the true geometry of
the bar is more complex than a free-free bar.

Table II compares theoretical and simulated values of the
first eigenfrequencies of the bar for several values of the bar
width. The theoretical value given by (1) is independent of the
width of the bar. However, simulations show that the width of



Fig. 13. Deflection of the bar as a function of the frequency for a given value
ofQ = 10000. Dimensions of the aluminium bar are 411µm×54µm×1µm
and those of the supporting arms are 5µm×4µm×1µm . The corresponding
first eigenfrequency is 55, 817 KHz. Dots are values of simulations obtained
with Oofelie. The red curve is the theoretical dynamical response given by
equation (3) while the blue curve is the theoretical dynamical response given
by equation (4).

Length Theorerical value Simulation value

µm KHz KHz

215 283.405 343.380
313 133.709 171.452
411 77.553 104.439
509 50.564 71.165
607 35.555 52.130
705 26.357 40.183
803 20.316 32.179
901 16.135 26.549

TABLE I
THEORETICAL AND NUMERICAL VALUES OF THE FIRST

EIGENFREQUENCIES AS A FUNCTION OF THE LENGTH OF AN ALUMINIUM
BAR WITH WIDTH a = 54µm, THICKNESS b = 2.5µm, AND WITH

15µm× 4µm× 2.5µm SUPPORTING ARMS.

Width Theorerical value Simulation value

µm KHz KHz

26 51.984 88.462
54 51.984 70.323
103 51.984 64.374
152 51.984 61.228
201 51.984 59.400

TABLE II
THEORETICAL AND NUMERICAL VALUES OF THE FIRST

EIGENFREQUENCIES AS A FUNCTION OF THE WIDTH OF AN ALUMINIUM
BAR WITH LENGTH L = 502µm, THICKNESS b = 2.5µm, AND WITH

15µm× 4µm× 2.5µm SUPPORTING ARMS.

the bar is an important parameter for the determination of the
eigenfrequencies, supporting the idea that our system cannot
be modelled by a simple free-free bar.

Finally, let us note that the sinusoidal current in the bar
induces a magnetic field around it which in magnitude may
be much larger than the external magnetic field we wish to
measure. However, this induced magnetic field also varies
sinusoidally and the resulting Lorentz force varies therefore
as ∼ sin2 ωt ∝ 1+cos 2ωt

2 . As a consequence, this force is not
amplified since it has a static component and a component

vibrating at twice the first eigenfrequency of the structure.
Moreover, the distribution of the induced magnetic field is
symmetric if the shape of the bar is symmetric. During
small displacements, this symmetry is slightly broken but the
effect is very small. On the other hand, if there are larger
asymmetries in the bar due to the micromachining process, the
influence of the induced magnetic field can set up an upper
limit on the smallest value of the external magnetic field that
can be measured with this technique.

E. Multi-layer structures

A prototype bar with multi-layer structure has also been
manufactured at the Microwave Laboratory of UCL (see
Section V). Therefore simulations with multi-layer structures
(2 or 3) were also carried out with Oofelie, one layer being
made of aluminium and the other ones made of less conductive
material such as silicon or silicon nitride (Si3N4).

1) Electromagnetic and thermal calculations: The electro-
magnetic and thermal simulations can be done similarly as
for monolayer structures. The current density ~j is mainly
distributed within the most conductive material (aluminium).
Thermal fluxes are also predominant in the aluminium layer.

2) Mechanical calculations: Eigenfrequencies increase in
multi-layer structures in comparison to the values obtained for
mono-layer structures. For example, for a 411µm× 54µm×
1µm with 5µm×4µm×1µm supporting arms, the first eigen-
frequency is 55.818 KHz for a mono-layer structure, 89.358
KHz for a two-layer aluminium/silicon nitride structure and
92.609 KHz for a three-layer aluminium/silicon nitride/silicon
structure.

With multi-layer structures, residual stresses can occur due
to intrinsic or extrinsic phenomena. To establish the accurate
distribution of these stresses is a very complicated task which
can be modeled with FEM simulations only if exact details
of the manufacturing processes are known. As a first step, a
simpler approach is undertaken : only residual stresses due
to a mismatch between aluminium and silicon nitride thermal
coefficients is considered. Figure 14 illustrates the deformation
of a bi-layer structure due to cooling from 150◦C, the deposi-
tion temperature for aluminium, to an ambient temperature
of 20◦C. The nitride layer undergoes compressive stresses
while the aluminium one undergoes tensile stresses. The first
eigenfrequency is shifted from ∼ 90 KHz for the structure
without these residual stresses to ∼ 105 KHz when these
residual stresses are taken into account. Further simulations
including detailed residual stresses in the bar will be important
to accurately model the dynamic behavior of the structure.

Finally, even though TED is negligible in mono-layer struc-
ture with thicknesses lower or equal to 2.5µm, it has to be
checked for bi-layer and three-layer structures. We assume
other types of dampings are negligible. The pyropiezoelectric
module of Oofelie is used as it allows couplings between
thermal and mechanical fields and therefore the prediction of
the TED. A frequency sweep around the first eigenfrequency
with ∆f = 7 Hz gives the deformation of the bar as a function



Fig. 14. Deformation of a 411µm× 54µm× 1.25µm bar with 5µm×
4µm× 1.25µm supporting arms. The structure has two layers : 1µm layer
of aluminium and 0.25µm layer of silicon nitride.

Fig. 15. Deformation of a 411µm×54µm×1.25µm two-layer bar (1µm
layer of aluminium and 0.25µm layer of silicon nitride) with 5µm×4µm×
1.25µm supporting arms, as a function of the frequency. ∆f = 7Hz.

of the frequency. Results for a 411µm×54µm×1.25µm two-
layer bar (1µm layer of aluminium and 0.25µm of nitride)
with 5µm × 4µm × 1.25µm supporting arms are shown in
Figure 15. The value of the quality factor Q is obtained from

Q =
ω0

∆ω
(19)

where ω0 is the frequency of the peak deformation dmax

and ∆ω is the frequency width at a value of dmax√
2

. A value
of Q = 12765 is found. For comparison, in mono-layer
structures, a value of Q ∼ 558000 is found for a structure with
the same dimensions (except the thickness b was equal to 1µm
and made only of aluminium) and with the same assumptions
(no other type of dampings). For a three-layer structure with
the same dimensions and a thickness of 1.35µm (1µm of
aluminium, 0.25µm of silicon nitride and 0.1µm of silicon),
the value of the quality factor is Q = 13153. Thermoelastic
damping is therefore an important source of damping in these
multi-layer structures.

V. FABRICATION OF A XBM PROTOTYPE

Following the parametric study and the simulations of
the XBM, prototypes have been realized in the Microwave
Laboratory of UCL. Two fabrication processes have been
used : Silicon-On-Insulator (SOI) and bulk. Several materials
were used, including aluminium, silicon and insulators such
as silicon nitride (Si3N4) and silicon oxide (SiO2). With both

Fig. 16. Design of the different layers used in the various fabrication
processes for the XBM prototype

processes, the curvature of the structure must be as small as
possible. Curvature of the structure may arise due to stress
gradients developing along the thickness of mono- or multi-
layer structures. The origin of these stress gradients can be
either intrinsic or extrinsic. In the latter case, they are due to
a difference in the thermal expansion coefficients between the
various layers constituting the structure. Indeed, these layers
are deposited at high temperature and contract differently when
they cool down. This creates stresses because the layers stick
together.

Figure 16 illustrates the three classes of structures designed
for the XBM prototype. For the SOI structures, we start with
a material made of 100 nm silicon layer - 250 nm SiO2 layer -
380µm silicon (substrate) on top of which is deposited a 250
nm LPCVD (low pressure chemical vapor deposition) silicon
nitride film. A mask is used to etch both the nitride and silicon
layers using positive litography. An 880 nm thick aluminium
layer is then deposited on top of the structure with an electron
gun deposition technique. The oxide layer is finally removed
using HF.

For bulk processes, there are two different types of struc-
tures. In both types, a thick bulk silicon layer is the substrate
on top of which a 400 nm silicon oxide film is deposited.
In the first type of structure, a 1000 nm aluminium film is
deposited using the electron gun deposition technique, then
the SiO2 film is etched. In the second type of structures, a
250 nm LPCVD nitride film is deposited between the silicon
oxyde film and the aluminium layer. It is etched before the
oxide film.

With bulk micromachining processes, the use of aluminium
which has much larger electric and thermal conductivites than
silicon increases the maximum value of current which can flow
through the bar, and therefore increase the sensitivity of the
device. However, an important drawback is that large residual
stresses remain after the fabrication process compared to those
observed in SOI structures. These stresses are mainly due to
the large difference of thermal expansion coefficients between
the silicon substrate and the aluminium layer.

In addition to the three different structures described above,
several lengths and widths of the bar are considered. Square
holes of dimensions 2µm × 2µm and spaced by 5µm have
been included in the design to allow the etching of the
insulating layer underneath the structure to release it.

These XBM prototypes will be tested soon at the LTAS and
results will be compared to the analytical results and the simu-



Fig. 17. Topography of one of the MEMS XBM prototype obtained with
white-light interferometry technique.

lations obtained with Oofelie. Measurements of the dimensions
of the curvature of the structure have been conducted at UCL
with the Polytec MSA-500 machine which uses white-light
interferometry techniques to measure the topography of the
structure. An example is shown in Figure 17. The structure
is strongly curved in the central part, with an elevation of a
few µm. Future measurements will have to determine how
the curvature of this structure affects the determination of the
eigenfrequencies of the bar as well as its displacement.

VI. METHODS FOR DETECTING THE BAR DEFLECTION

According to equation (3), if we know the dimensions of
the bar, the Young modulus of the material, the electric current
flowing through the device and the mechanical quality factor
at the resonance, one component of the external magnetic
field can be determined from the measurement of the bar
displacement d. In this section, we review a number of well-
established detection techniques which can be used to measure
this displacement such as optical and capacitive methods. We
also briefly consider potentially interesting new techniques
such as surface plasmons resonance and the use of a mag-
netostrictive material for the bar. An important aspect is that
we are looking for a device that can be miniaturized together
with the bar and the associated electronics.

A. Optical methods

The first optical method proposed here consists in measuring
the time delay needed by a laser beam emitted by a laser diode
to return after a reflection on one point of the bar. This method
will be used in the LTAS to measure the bar displacement of
the XBM prototypes. A variant of this method was used by
the team at the John Hopkins Institute (Oursler et al, 1999). In
this case, the light from the laser diode is reflected from the
bar to form a spot on a position-sensitive-device. In general,
optical methods can reach a resolution lower than 1 nm but
the optical devices cannot easily be minituarized.

B. Capacitive methods

With this method, the variation of a capacitance C is
measured to determine the displacement of the bar. The bar is
used as one of the capacitor’s electrode and the other (static)
electrode is placed under the bar on the silicon substrate. First,
the value of the capacitance is measured when the bar is static.
Then,when the bar undergoes deformation, the upper electrode
moves and there is a change of the capacitance ∆C linked
to the displacement of the bar. For a parallel-plate capacitor,

when the surface of the electrodes Se is much larger than
the distance between them d (Se � d2), the value of the
capacitance is simply given by

C =
ε Se
d

(20)

where ε is the dielectric permittivity of the medium between
the electrodes.

There are a number of difficults to solve associated to
this method. First, the variation of C with d is not linear
but hyperbolic. A way to circumvent this problem is to
actually measure the impedance X = 1/ω C rather than the
capacitance itself. An example is to use a Wheatstone bridge in
a “push-pull” configuration in which two capacitors are located
in contiguous branches and similar impedances are chosen for
the two other branches. The bridge is in equilibrium in the
static case. When the bar vibrates and moves of a distance d,
the value of the first capacitance becomes C1 = ε Se

dst+d
while

the value of the other one becomes C2 = ε Se

dst−d where dst
corresponds to the static case. The new equilibrium condition
gives an output voltage at the detector which is directly
proportional to the bar displacement (if d� dst, the distance
between the electrodes in the static case). Second, when the
bar vibrates, the form of the capacitor is different from a
perfect parallel-plate capacitor. The distance d between the
bar and the substrate is not the same along the bar since it
has a parabolic shape. This makes it more difficult to actually
calculate the value of the capacitance. Also, the assumption
S � d2 has to be carefully checked in order to see if fringing
effects are indeed negligible, otherwise equation (20) is not
valid anymore. Finally, to accurately measure the small value
of ∆C resulting from the tiny displacement of the bar d,
the shielding of the wires must be really good to minimize
parasitic capacitances.

Capacitance variations are usually converted into a volt-
age or a frequency with electric circuits. With capacitive
methods, subnanometric distances can be measured. For a
50µm wide beam and an initial gap of 1µm between the
bar and the substrate (or between the electrodes), the initial
(static) capacitance is C ∼ 2× 10−2 pF. The variation of the
capacitance ∆C due to a 10 nm displacement of the bar is of
the order of 2×10−4 pF. Despite some difficulties, one of the
strong advantage of capacitive methods is their capabilities of
miniaturization.

C. Use of a magnetostrictive material

If the bar is made of a magnetostrictive material, its di-
mensions and properties will change in the presence of an
external magnetic field which will modify eigenfrequencies
according to equation (1). With this technique, a frequency
shift is measured instead of the displacement of the bar which
is easier to measure accurately. Magnetostrictive materials are
characterized by their magnetostrictive coefficient Λ which
measures the fractional change in length when the magnetiza-
tion of the material increases from 0 to its saturation value.
This coefficient is usually of the order of 10−5 such that the



frequency shifts due to subnanotesla values would be very
small. Magnetostrictive alloys with higher magnetostrictive
coefficients do exist but are not widely used in MEMS
technology.

D. Surface Plasmons Resonance

Surface plasmons (SP) are collective surface plasma oscil-
lations of the free electron gas on the interface between a
metal and a dielectric medium. Those electromagnetic waves
propagate parallel to the metal/dielectric boundary and are
very sensitive to any change of this boundary. SP can be
excited resonantly by TM (transverse magnetic) polarized light
hitting the interface at a specific incident angle when the
tangential component of its wave vector matches the SP wave
vector kSP. When this happens, the light intensity reflected
by the metallic film is strongly dimmed for this specific angle
(Hastanin et al, 2008). The wave vector of the SP is given by
the following dispersion relation :

kSP =
ω

c

√
ε(ω).εd
ε(ω) + εd

(21)

where ω/c is the wave vector of the light in the vacuum,
ε(ω) is the complex dielectric function of the metal and εd
is the dielectric function of the dielectric medium. The wave
vector of SP is larger than the tangential component of the
wave number of the incident light for any given incident angle.
Therefore, the SP can be excited only by an evanescent light
wave. The most common way to excite SP is the Kretschmann-
Raether configuration in which TM polarized light coming
from a source is totally reflected on the surface of a prism onto
which a thin metal film has been deposited (Kretschmann &
Raether 1968). The evanescent wave interacts with the plasma
waves on the surface and generates plasmons. In this case, the
surface plasmon resonance (SPR) incident angle is given by

θSPR = arcsin

(
1
n

√
εr(ω) . εd
εr(ω) + εd

)
(22)

where n is the refraction index of the prism and εr(ω) is
the real part of the dielectric function of the metal.

Both the wave vector of SP and the SPR angle of incidence
depends on the thickness of the dielectric medium. Now let
us locate the vibrating bar in the vicinity of this device at
a distance d1 of the thin metal film. In the static case, the
SPR incident angle as well as the sharp dip of the intensity of
the light can be determined. In the dynamical case, when the
bar vibrates, the thickness d1 of the dielectric medium (air or
vacuum) will change accordingly to the deformation of the bar
d and produce a SPR angle shift sufficient to be detected via
the metal film reflectivity measurement (Hastanin et al, 2008).

Typical metals that support surface plasmons are silver,
gold or copper. Gold and copper are used for MEMS man-
ufacturing. Both metals have a better electrical conductivity
than aluminium. Copper is also a slightly stronger material
than pure aluminium but does not adhere particularly well to

silicon. Copper is also an excellent thermal conductor. SPR is a
promising method for detecting the bar displacement but since
the readout detection measurement relies on optical methods,
it might prove difficult to be miniaturized.

VII. CONCLUSIONS AND PERSPECTIVES

In space physics community, there is an increasing need to
carry out multi-point measurements, in particular for magnetic
field measurements. This is true for both scientific and space
weather applications. The current trend is to develop and
launch a set of micro-, nano- or pico-satellites carrying a small
and light payload with small energy consumptions needs. With
these requirements in mind, we initiated a study to design
a MEMS xylophone bar magnetometer which fulfills these
conditions.

Of course the XBM must also be able to at least reach the
same accuracy as magnetometers currently flying in space, i.e.
a precision of ∼ 0.1 nT. With typical dimensions used in this
paper for an aluminium bar (L ∼ 500µm, a ∼ 50µm and
b ∼ 1µm) and with a maximal RMS value of 0.15 A for the
current flowing through the bar, the displacement of the bar
is very small, d ∼ 10−11 m, in the presence of an external
magnetic field Bext = 0.1 nT and for a reasonable quality
factor Q = 10000. Measuring such a small value of the bar
displacement will be a very challenging task.

In the near future, FEM simulations will be improved to
better take into account the complex couplings between the
electromagnetic, thermal and mechanical fields. A detailed
modelisation of the manufacturing process used to build the
MEMS XBM will also be carried out with FEM in order to ob-
tain an accurate distribution of residual stresses in the bar and
see how this distribution modifies its eigenfrequencies. Those
simulations will be compared to measurements obtained at
LTAS on the XBM prototype manufactured at the Microwave
Laboratory of UCL.
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